Показать сообщение отдельно
Старый 17.03.2010, 18:19   13
madtehnik
Модератор
 
Аватар для madtehnik
 
Регистрация: 14.02.2010
Последняя активность: 31.07.2018 13:33
Адрес: Киев
Сообщений: 1070
Сказал(а) спасибо: 9
Поблагодарили 5 раз(а) в 5 сообщениях
По умолчанию

Лазер с ядерной накачкой
как вам такое?

Добавлено через 1 минуту
Рентгеновский лазер с возбуждением активной среды с помощью энергии ядерного взрыва является на сегодняшний день одним из наиболее мощных лазерных устройств (устройство одноразового применения поскольку при взрыве оно испаряется).

Но при создании коротковолновых лазеров необходимо преодолеть принципиальные трудности. Чтобы осуществлялся эффект усиления электромагнитного излучения при его прохождении через активную среду, необходимо, во-первых, большое количество возбужденных атомов, готовых испустить кванты вынужденного излучения, а во-вторых, большая вероятность взаимодействия между квантами и этими атомами, обеспечивающая это вынужденное излучение. Коэффициент усиления излучения составляет = s (Nвоз — Nocн), где s — сечение взаимодействия квантов с атомами, Nвоз и Nocн — число атомов в возбужденном и основном состояниях. В условиях термодинамического равновесия Nвоз < Nocн, поэтому поглощение преобладает над вынужденным излучением. Для получения лазерного эффекта необходимо создать среду с инверсной заселенностью атомов по энергетическим состояниям: Nвоз > Nocн. Кроме этого, из фундаментальных законов квантовой физики следует, что s µ l2.

Значит, чем короче длина волны излучения, тем труднее осуществить его квантовое усиление. Поэтому первые такие усилители были созданы в радиодиапазоне (мазеры) в конце 50-х годов. В 60-е годы был построен первый оптический генератор непрерывного действия (гелий-неоновый лазер). Методы нелинейной оптики позволили к середине 70-х годов создать лазеры, работающие в области вакуумного ультрафиолета (возбужденные неоноподобные атомы) около 1000 Ангстрем (СССР). А к концу 70-х стало ясно, что практически осуществима схема лазера с длиной волны около 10-20 Ангстрем, на многозарядных ионах(например ионы селена-74) с возбуждением с помощью мощного лазера оптического диапазона (неодимовый лазер). А для рентгеновского диапазона с длиной волны менее 10 Ангстрем должны быть использованы ядерные переходы а так же эффект Мёссбауэра (излучение квантов в кристаллах без «отдачи» атома, а значит, без смещения частоты излучения вследствие доплер-эффекта).

Для поддержки инверсной заселенности верхних уровней мощность возбуждения должна быть намного больше той, которая рассеивается в виде спонтанного излучения в среде (тепловые потери и др). Как известно, энергия кванта пропорциональна частоте излучения и к, тому же вероятность спонтанного излучения, бесполезно уносящего энергию внешнего источника возбуждения, пропорциональна третьей степени от частоты излучения. Учитывая это, получим, что мощность, необходимая для поддержания инверсной заселенности, W µ n4 µ l-4.Так например для лазеров видимого диапазона с длиной волны около 500 нм, достаточно обеспечить мощность, вводимую в см³ среды около 100-10000 Вт/см³ (лампы-вспышки, хим-е реакции), то для лазера рентгеновского диапазона с длиной волны около 0,5 нм, плотность энергии «накачки» должна быть около 10 в десятой степени- 10в пятнадцатой степени Вт/см2 (!). Такой высокий уровень энергий при «накачке» может быть обеспечен только с помощью ядерного взрыва, либо в фокальном пятне мощного импульсного лазера.

В 1984 году в США была осуществлена генерация лазерного рентгеновского излучения в газовой среде с использованием в качестве источника накачки мощного двухлучевого оптического лазера «NOVETTA» И «NOVA» (Ливермор,Ливерморская национальная лаборатория имени Лоуренса), каждый луч которого имел плотность мощности 5 ґ 10в тринадцатой степениВт/см²в импульсе длительностью 450 пикосекунд на волне 5320 Ангстрем. В фокусе лазера помещалась мишень — тончайшая пленка размером 0,1 ґ 1,1 см из селена-74 или иттрия.Луч испарял мишень, создавая плазму из неоноподобных ионов этих металлов. Столкновения с электронами в плазме вызывали возбуждение ионов, которое заканчивалось вынужденным излучением на волне 206,3 Ангстрема и 209,6 Ангстрема для селена и 155 A — для ионов иттрия. Достигнутый коффиэциент усиления превысил 100000000 раз.

В том же году в лаборатории физики плазмы (Принстон, США) с помощью мощного ИК-лазера на молекулах углекислого газа удалось получить лазерный эффект в углеродной плазме на волне 182 Ангстрем. Их лазер накачки имел импульсную мощность около 20 ГВт. Пучок лазера был сфокусирован на площади диаметром около 0,2 мм, что и позволило достичь плотности энергии около 10в тринадцатой степени Вт/см².В этих экспериментах впервые использовалось для увеличения коэффициента лазерного усиления рентгеновское сферическое зеркало, состоящее из чередующихся слоев молибдена толщиной 35 A и кремния толщиной 60 A. Каждый молибденовый слой слабо отражает рентгеновские лучи, но отраженные от последовательных слоев лучи складываются, и вследствие интерференции усиливаются, таким образом коэффициент отражения зеркала нарастает и достигает 62-75 %.

В 1986, полностью ионизовав в фокусе мощного лазера атомы фтора, исследователи получили лазерное излучение с длиной волны 80 Ангстрем. Дальнейшее уменьшение длины волны необходимо для уменьшения угловой расходимости лазерного пучка, и потребует огромных плотностей энергии «накачки», которые можно получить только при ядерном взрыве. Разработки в данном направлении, с целью создания боевого лазера работающего в рентгеновской части спектра велись в США (Ливермор, Э.Теллер). Во время подземных ядерных взрывовв 1983 году(полигон Невада) были проведены оценочные испытания первых рентгеновских лазеров). В 1983 году было опубликовано первое сообщение об измеренных во время эксперимента параметрах лазерного излучения: длина волны около 14 Ангстрем, длительность импульса Ј 10-9 с, мощность излучения полученная от рентгеновского лазера при атомном взрыве превысила 400 Тераватт (!). Конструкция лазера не была подробно описана, но стало известно, что его рабочим телом были тонкие металлические стержни.

После взрыва ядерного заряда вещество рабочих стержней превращается в полностью ионизованную плазму. Когда температура электронов несколько снижается, и начинается рекомбинация в основном на нижние уровни, происходит излучение в рентгеновской части спектра. Поскольку время высвечивания плазмы измеряется пикосекундами, и облако раскаленной до миллионов градусов плазмы не успевает существенно изменить свою геометрию, то оно сохраняет форму и направление рабочего стержня. Так как зеркал для работы с рентгеновским излучением с длиной волны около 10 A пока еще не существует (см.рентгеновское зеркало), то рентгеновский лазер, вероятно, должен работать без резонатора. Поэтому расходимость пучка будет определяться двумя факторами: дифракцией и геометрией стержня. Точнее говоря, наибольшим значением из них. Принимая малое значение расходимости, получим оптимальную величину диаметра: D = (lL)1/2. Для длин волн около 10-14 Ангстрем и L = 7 м это дает D = 0,1 мм. Даже если в процессе ионизации и рекомбинации вещества его геометрия изменится незначительно, расходимость луча достигает ~ 10-5рад. Однако более детальный расчет показывает, что к моменту рекомбинации сгусток плазмы может расшириться до 0,8-1 мм, и в этом случае расходимость лазерного луча будет порядка от 10в минус четвёртой до 10в минус пятой степени. Для поражения межконтинентальной ракеты, то есть для достижения плотностей энергии около 10-20 кДж/см²на расстоянии до 1000 километров при расходимости луча 10-5, в импульсе такого лазера должна быть энергия ~ 10в десятой степени Джоулей. При КПД лазера около 8-10 % и при расстоянии стержня от ядерного заряда ~ 1 м мощность заряда должна быть около 10в пятнадцатой степени Джоулей, или порядка двухсот килотонн тротилового эквивалента. При этом предположительно львиная доля энергии ядерного взрыва пойдет на испарение рабочих стержней (стержня), и сама струна ориентирована к заряду не торцом, а боковой поверхностью. Однако в литературе на эту тему упоминаются заряды значительно меньшей мощности. Возможно использовать не одну, а несколько десятков (около 50-100) параллельно ориентированных стержней наводимых на цель. Возможно также что инженеры попытаются создать концентратор энергии взрыва на одной струне, используя эффект отражения рентгеновских лучей от кристаллов или многослойные рентгеновские зеркала (с высокими характеристиками отражения), и в этой области предвидится значительный успех.

Современные технологии позволяют создавать достаточно компактные рентгеновские лазеры (массой около 1-2 тонны), удобные для вывода на орбиту с помощью межконтинентальных ракет. Компьютерное управление отдельными стержнями позволит поражать одновременно до нескольких десятков целей, или гарантированно поражать одну. Таким образом можно заключить из целого ряда публикаций что рентгеновский лазер при соответствующем развитии технологий способен стать одним из основных инструментов в космических вооружениях и системах противоракетной обороны.

Добавлено через 1 минуту
Лазер с ядерной накачкой — это лазерное устройство, основная энергия лазерного излучения которого генерируется в рентгеновском диапазоне электромагнитного излучения. Существующие рентгеновские лазеры приводятся в действие различными способами, основными из которых являются ядерный либо термоядерный взрыв, инверсное излучение возбуждённых плазменных сред, излучение возбуждённых твердотельных сред либо синхротронное излучение пучка электронов при пролёте через область переменного магнитного поля (FEL-лазер).
__________________
могу работать , могу не работать http://forum.hobbi.tv/image.php?type=sigpic&userid=18&dateline=1268848887

[Исправлено: madtehnik, 19.03.2010 в 21:53].
madtehnik вне форума   Ответить с цитированием Вверх